Blackwater Community School
 Curriculum Map 2015-2016

Third Grade Quarter 2

Module 3: Multiplication and Division with Units of 0, 1, 6-9, and Multiples of 10
 Approximately 25 Days - Begin around October $13^{\text {th }}$

This 25 -day module builds directly on students' work with multiplication and division in Module 1 . Module 3 extends the study of factors from 2, 3, 4,5 , and 10 to include all Modules from 0 to 10 , as well as multiples of 10 within 100 . Similar to the organization of Module 1 , the introduction of new factors in Module 3 spreads across topics. This allows students to build fluency with facts involving a particular unit before moving on. The factors are sequenced to facilitate systematic instruction with increasingly sophisticated strategies and patterns.

Major Clusters:			3.OA.A - Represent and solve problems involving multiplication and division. 3.OA.B - Understand properties of multiplication and the relationship between multiplication and division. 3.OA.C - Multiply and divide within 100. 3.OA.D - Solve problems involving the four operations, and identify and explain patterns in arithmetic.			
			3.NBT.A - Use place value understanding and properties of operations to perform multi-digit arithmetic.			
Voc	ula		Even, odd, Multiple, Multiplier, Product			
	은 ¢ ¢		Arizona's College and Career Ready Standards		Explanations \& Examples	Notes \& Resources
3.0A	A	3	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. 3.MP.1. Make sense of problems and persevere in solving them. 3.MP.4. Model with mathematics. 3.MP.7. Look for and make use of structure.	Students use a variety step word problems, i, equations. They use m 10×10. Students expla one representation, and Word problems may - Equations: $3 \times$ - Array: - Equal groups	of representations for creating and solving onee., numbers, words, pictures, physical objects, or ultiplication and division of whole numbers up to in their thinking, show their work by using at least d verify that their answer is reasonable. represented in multiple ways: $4=?, 4 \times 3=?, 12 \div 4=? \text { and } 12 \div 3=\text { ? }$	Engage NY M3 Lessons 1-21 enVision Topic 4,5,6,7,8,9

	$\begin{aligned} & \text { 을 } \\ & \text { W } \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$		Arizona's College and Career Ready Standards	Explanations \& Examples							Notes and Resources

$\begin{aligned} & \text { 응 } \\ & 03 \\ & \text { DU. } \end{aligned}$		$\begin{aligned} & \text { n } \\ & \text { O } \\ & \text { 2 } \\ & \text { 를 } \end{aligned}$	Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
				Solution: The bananas will last for 6 days. Students may use interactive whiteboards to show work and justify their thinking.	
3.0A	A	4	Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=\Delta \div 3,6 \times 6$ = ?. 3.MP.1. Make sense of problems and persevere in solving them. 3.MP.2. Reason abstractly and quantitatively. 3.MP.6. Attend to precision. 3.MP.7. Look for and make use of structure.	This standard is strongly connected to 3.AO. 3 when students solve problems and determine unknowns in equations. Students should also experience creating story problems for given equations. When crafting story problems, they should carefully consider the question(s) to be asked and answered to write an appropriate equation. Students may approach the same story problem differently and write either a multiplication equation or division equation. Students apply their understanding of the meaning of the equal sign as "the same as" to interpret an equation with an unknown. - When given $4 \times \quad ?=40$, they might think: 04 groups of some number is the same as 40 o 4 times some number is the same as 40 o I know that 4 groups of 10 is 40 so the unknown number is 10 0 The missing factor is 10 because 4 times 10 equals 40 . Equations in the form of $a x b=c$ and $c=a x b$ should be used interchangeably, with the unknown in different positions. Examples: - Solve the equations below: $\begin{aligned} & 24=? \times 6 \\ & 72 \div \Delta=9 \end{aligned}$ - Rachel has 3 bags. There are 4 marbles in each bag. How many marbles does Rachel have altogether? $3 \times 4=\mathrm{m}$ Students may use interactive whiteboards to create digital models to explain and justify their thinking.	Engage NY M3 Lessons 1-18 enVision Topic 7
3.0A	B	5	Apply properties of operations as strategies to multiply and divide. (Students need not use formal terms for these properties.) Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5=15$, then	Students represent expressions using various objects, pictures, words and symbols in order to develop their understanding of properties. They multiply by 1 and 0 and divide by 1 . They change the order of numbers to determine that the order of numbers does not make a difference in multiplication (but does make a difference in division). Given three factors, they investigate changing the order of how they multiply the numbers to determine that changing the order does not change the	Engage NY M3 Lessons 1-15, 19- 21 enVision Topic 4,6

Page 3 of 11

0 0 3 3 0 0	$\begin{aligned} & \text { 을 } \\ & \bar{U} \\ & \text { D } \end{aligned}$		Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
			$15 \times 2=30$, or by $5 \times 2=10$, then $3 \times 10=$ 30. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5$ $+2)=(8 \times 5)+(8 \times 2)=40+16=56$. (Distributive property.) 3.MP.1. Make sense of problems and persevere in solving them. 3.MP.4. Model with mathematics. 3.MP.7. Look for and make use of structure. 3.MP.8. Look for and express regularity in repeated reasoning.	product. They also decompose numbers to build fluency with multiplication. Models help build understanding of the commutative property: Example: $3 \times 6=6 \times 3$ In the following diagram it may not be obvious that 3 groups of 6 is the same as 6 groups of 3 . A student may need to count to verify this. is the same quantity as Example: $4 \times 3=3 \times 4$ An array explicitly demonstrates the concept of the commutative property. 4 rows of 3 or 4×3 3 rows of 4 or 3×4 Students are introduced to the distributive property of multiplication over addition as a strategy for using products they know to solve products they don't know. Example: - If students are asked to find the product of 7×8, they might decompose 7 into 5 and 2 and then multiply 5×8 and 2×8 to arrive at $40+16$ or 56 . Students should learn that they can decompose either of the factors. It is important to note that the students may record their thinking in different ways.	

$\begin{aligned} & \text { 응 } \\ & 03 \\ & \text { 를. } \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \text { W } \\ & \text { D } \end{aligned}$	\sim 0 0 0 0 0	Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
				$\begin{aligned} & 7 \times 4=28 \\ & 7 \times 4=\underline{+28} \end{aligned}$ To further develop understanding of properties related to multiplication and division, students use different representations and their understanding of the relationship between multiplication and division to determine if the following types of equations are true or false. - $0 \times 7=7 \times 0=0$ (Zero Property of Multiplication) - $1 \times 9=9 \times 1=9$ (Multiplicative Identity Property of 1) - $3 \times 6=6 \times 3$ (Commutative Property) - $8 \div 2=2 \div 8$ (Students are only to determine that these are not equal) - $2 \times 3 \times 5=6 \times 5$ - $10 \times 2<5 \times 2 \times 2$ - $2 \times 3 \times 5=10 \times 3$ - $0 \times 6>3 \times 0 \times 2$	
3.0A	C	7	Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5$ $=8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers. 3.MP.2. Reason abstractly and quantitatively. 3.MP.7. Look for and make use of structure. 3.MP.8. Look for and express regularity in repeated reasoning.	By studying patterns and relationships in multiplication facts and relating multiplication and division, students build a foundation for fluency with multiplication and division facts. Students demonstrate fluency with multiplication facts through 10 and the related division facts. Multiplying and dividing fluently refers to knowledge of procedures, knowledge of when and how to use them appropriately, and skill in performing them flexibly, accurately, and efficiently. Strategies students may use to attain fluency include: - Multiplication by zeros and ones - Doubles (2s facts), Doubling twice (4s), Doubling three times (8s) - Tens facts (relating to place value, 5×10 is 5 tens or 50) - Five facts (half of tens) - Skip counting (counting groups of and knowing how many groups have been counted) - \quad Square numbers (ex: 3×3) - Nines (10 groups less one group, e.g., 9×3 is 10 groups of 3	Engage NY M3 Lessons 1-18 enVision Topic 8

$\begin{aligned} & \text { ס } \\ & 0 \\ & 3 \\ & \text { Diver } \end{aligned}$	$\begin{aligned} & \text { 읃 } \\ & \overline{U N} \\ & \text { D } \end{aligned}$		Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
				minus one group of 3) - Decomposing into known facts (6×7 is 6×6 plus one more group of 6) - Turn-around facts (Commutative Property) - Fact families (Ex: $6 \times 4=24 ; 24 \div 6=4 ; 24 \div 4=6 ; 4 \times 6=24$) - Missing factors General Note: Students should have exposure to multiplication and division problems presented in both vertical and horizontal forms.	
3.0A	D	8	Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (This standard is limited to problems posed with whole numbers and having wholenumber answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order (Order of Operations). 3.MP.1. Make sense of problems and persevere in solving them. 3.MP.2. Reason abstractly and quantitatively. 3.MP.4. Model with mathematics. 3.MP.5. Use appropriate tools strategically.	Students should be exposed to multiple problem-solving strategies (using any combination of words, numbers, diagrams, physical objects or symbols) and be able to choose which ones to use. Examples: - Jerry earned 231 points at school last week. This week he earned 79 points. If he uses 60 points to earn free time on a computer, how many points will he have left? o A student may use the number line above to describe his/her thinking, o " $231+9=240$ so now I need to add 70 more. 240, 250 (10 more), 260 (20 more), 270, 280, 290, 300, 310 (70 more). Now I need to count back 60. 310, 300 (back 10), 290 (back 20), 280, 270, 260, 250 (back 60)." o A student writes the equation, $231+79-60=m$ and uses rounding o (230 + 80-60) to estimate. o A student writes the equation, $231+79-60=m$ and calculates $79-60=19$ and then calculates $231+19=m$. - The soccer club is going on a trip to the water park. The cost of attending the trip is $\$ 63$. Included in that price is $\$ 13$ for lunch and the cost of 2 wristbands, one for the morning and one for the	Engage NY M3 Lessons 8-11, 16- 21 Also addressed in Unit 7. enVision Topic 3

	$\begin{aligned} & \text { 읃 } \\ & \overline{U N} \\ & \text { D } \end{aligned}$		Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
				afternoon. Write an equation representing the cost of the field trip and determine the price of one wristband. The above diagram helps the student write the equation, w+w+ $13=63$. Using the diagram, a student might think, "I know that the two wristbands cost $\$ 50(\$ 63-\$ 13)$ so one wristband costs $\$ 25$." To check for reasonableness, a student might use front end estimation and say 60-10 $=50$ and $50 \div 2=25$. When students solve word problems, they use various estimation skills which include identifying when estimation is appropriate, determining the level of accuracy needed, selecting the appropriate method of estimation, and verifying solutions or determining the reasonableness of solutions. - Estimation strategies include, but are not limited to: o using benchmark numbers that are easy to compute 0 front-end estimation with adjusting (using the highest place value and estimating from the front end making adjustments to the estimate by taking into account the remaining amounts) rounding and adjusting (students round down or round up and then adjust their estimate depending on how much the rounding changed the original values)	
3.0A	D	9	Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends. 3.MP.1. Make sense of problems and	Students need ample opportunities to observe and identify important numerical patterns related to operations. They should build on their previous experiences with properties related to addition and subtraction. Students investigate addition and multiplication tables in search of patterns and explain why these patterns make sense mathematically. Examples: - Any sum of two even numbers is even. - Any sum of two odd numbers is even. - Any sum of an even number and an odd number is odd. - The multiples of $4,6,8$, and 10 are all even because they can all	Engage NY M3 Lessons 1-7, 12-21 enVision Topic 5

$\begin{aligned} & \text { 응 } \\ & 03 \\ & \text { DU. } \end{aligned}$	$\begin{aligned} & \text { @ } \\ & \text { N } \\ & \text { D } \end{aligned}$		Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
			persevere in solving them. 3.MP.2. Reason abstractly and quantitatively. 3.MP.3. Construct viable arguments and critique the reasoning of others. 3.MP.6. Attend to precision. 3.MP.7. Look for and make use of structure.	be decomposed into two equal groups. - The doubles (2 addends the same) in an addition table fall on a diagonal while the doubles (multiples of 2) in a multiplication table fall on horizontal and vertical lines. - The multiples of any number fall on a horizontal and a vertical line due to the commutative property. - All the multiples of 5 end in a 0 or 5 while all the multiples of 10 end with 0 . Every other multiple of 5 is a multiple of 10. Students also investigate a hundreds chart in search of addition and subtraction patterns. They record and organize all the different possible sums of a number and explain why the pattern makes sense.	
3.NBT	A	3	Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9 $\times 80,5 \times 60$) using strategies based on place value and properties of operations. 3.MP.2. Reason abstractly and quantitatively. 3.MP.7. Look for and make use of structure. 3.MP.8. Look for and express regularity in repeated reasoning.	Students use base ten blocks, diagrams, or hundreds charts to multiply one-digit numbers by multiples of 10 from 10-90. They apply their understanding of multiplication and the meaning of the multiples of 10. Example: - 30 is 3 tens and 70 is 7 tens. They can interpret 2×40 as 2 groups of 4 tens or 8 groups of ten. They understand that 5×60 is 5 groups of 6 tens or 30 tens and know that 30 tens is 300 . After developing this understanding they begin to recognize the patterns in multiplying by multiples of 10. Students may use manipulatives, drawings, document camera, or interactive whiteboard to demonstrate their understanding.	Engage NY M3 Lessons 19-21 enVision Topic 5

	号		Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources

Module 4: Multiplication and Area

Approximately 20 days - Begin around November $23^{\text {rd }}$

In this 20-day module students explore area as an attribute of two-dimensional figures and relate it to their prior understandings of multiplication. Students conceptualize area as the amount of two-dimensional surface that is contained within a plane figure. They come to understand that the space can be tiled with unit squares without gaps or overlaps. They make predictions and explore which rectangles cover the most area when the side lengths differ. Students progress from using square tile manipulatives to drawing their own area models and manipulate rectangular arrays to concretely demonstrate the arithmetic properties. The unit culminates with students designing a simple floor plan that conforms to given area specifications.

Major Clusters:			3.MD.C - Geometric measurement: understand concepts of area and relate area to multiplication and to addition.		
Supporting Clusters:					
Vocabulary			Area, Area model, Square unit, Tile, Unit square, Whole number		
3.MD	C	5	Recognize area as an attribute of plane figures and understand concepts of area measurement. a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units. 3.MP.2. Reason abstractly and quantitatively. 3.MP.4. Model with mathematics. 3.MP.5. Use appropriate tools strategically. 3.MP.6. Attend to precision.	Students develop understanding of using square units to measure area by: - Using different sized square units - Filling in an area with the same sized square units and counting the number of square units - An interactive whiteboard would allow students to see that square units can be used to cover a plane figure. one square unit	Engage NY M4 Lessons 1-16 enVision Topic 14

	$\begin{aligned} & \text { n } \\ & \text { nun } \\ & \end{aligned}$		Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
			quantitatively. 3.MP.4. Model with mathematics. 3.MP.5. Use appropriate tools strategically. 3.MP.6. Attend to precision.	- Students can decompose a rectilinear figure into different rectangles. They find the area of the figure by adding the areas of each of the rectangles together. area is $12 \times 3+8 \times 7=$ 92 sq inches	

